Compare Shedding Across Multiple Studies
import shedding_hub
# Load multiple datasets
datasets = [
shedding_hub.load_dataset('woelfel2020virological'),
shedding_hub.load_dataset('han2020sequential'),
shedding_hub.load_dataset('kim2020viral')
]
# Perform comparative analysis
comparison = shedding_hub.compare(datasets,
biomarker='SARS-CoV-2',
specimen='stool')
# Generate comparison report
comparison.report(output='comparison.html')
Prepare Data for Bayesian Modeling
import shedding_hub
# Load dataset and filter for specific biomarker
data = shedding_hub.load_dataset('woelfel2020virological')
filtered = data.filter(biomarker='SARS-CoV-2', specimen='stool')
# Export for Stan
stan_data = filtered.to_stan(
response_var='concentration',
time_var='time_since_onset'
)
# Save for modeling
import json
with open('model_data.json', 'w') as f:
json.dump(stan_data, f)
Export to pandas for Custom Analysis
import shedding_hub
import pandas as pd
# Load and convert to DataFrame
data = shedding_hub.load_dataset('woelfel2020virological')
df = data.to_dataframe()
# Perform custom analysis with pandas
summary = df.groupby(['participant_id', 'biomarker']).agg({
'concentration': ['mean', 'max', 'count'],
'time': ['min', 'max']
})
print(summary)